File + Solns.

Student Number:

LORETO KIRRIBILLI 85 CARABELLA ST KIRRIBILLI 2061

Oxley College

TRIAL EXAMINATION 2000

3 UNIT MATHEMATICS

Time Allowed - 2 hours (Plus 5 minutes reading time)

INSTRUCTIONS

Attempt all questions.

All questions are of equal value.

Show all necessary working in every question.

Marks may be deducted for poorly arranged or careless work.

Board-approved calculators may be used.

Clearly label each question and part on your answer sheet.

Start each question on a new page.

Question 1.

(12 marks)

- [4] (a) (i) Write down the expansion of $\tan (A + B)$
 - (ii) Find the value of tan 105° in simplest surd form.
- [3] (b) Solve the inequality: $\frac{2x+1}{2x-1} \ge 2$
- [2] (c) Evaluate: $\int_{0}^{\pi/4} \cos x \sin^2 x \, dx.$
- [3] (d) Solve: $x^6 9x^3 + 8 = 0$

Question 2.

(12 marks)

(Start on a new page)

- [4] (a) (i) Find $\frac{d}{dx} (x \log x x)$
 - (ii) Hence evaluate $\int_{2}^{e} \log x \, dx$. Leave the answer in exact form.
- [3] (b) In the diagram, AC and BC are tangents to the circle, touching at F and E respectively. ∠ ACB equals 50°.

(ii) Hence, find ∠ EDF, giving reasons for your answer.

- 5] (c) (i) Show that $\cos 6x = 2\cos^2 3x 1$.
 - (ii) The arc of the curve $y = \cos 3x$ between the lines x = 0 and $x = \frac{\pi}{6}$ is rotated about the x-axis.

Using (i), or otherwise, find the exact volume of the solid formed.

Question 3.

(12 marks)

- [5] (a) Consider the equation $x^2 4 + \log_e x = 0$
 - (i) Show, by means of calculations, that the root of the equation lies between 1 and 2.
 - (ii) Use two applications of the 'halving the interval' method to find a smaller interval containing the root.
 - (iii) By drawing a graph of $y = \log_e x$, and any other appropriate graph on the same set of axes, verify that the equation has only one root.
- [7] (b) Given the function: $y = \frac{x^2 2x 3}{x 1}$
 - (i) Find the coordinates of the points of intersection with the axes.
 - (ii) Find the equation of any asymptotes.
 - (iii) Show that the curve has no stationary points.
 - (iv) Sketch the curve.

Question 4.

(12 marks)

- [4] (a) The roots, α , β and γ of the equation $8x^3 36x^2 + 22x + 21 = 0$ are in an arithmetic progression.
 - (i) Show that $\alpha + \gamma = 2\beta$
 - (ii) Write down the value of $\alpha + \beta + \gamma$
 - (iii) Find α , β and γ .
- [4] (b) (i) Show that $\sum_{r=1}^{n} (5r-4) = 1 + 6 + 11 + ... + (5n-4)$
 - (ii) Hence, prove by Mathematical Induction that $\sum_{r=1}^{n} (5r-4) = \frac{1}{2}n(5n-3)$
- 4] (c) From a plane 500 metres above a road junction J, the angle of depression to a point M, due south of the junction is 42° .

 To another point N, bearing 080° from the junction, the angle of depression is 32° .
 - (i) Find the lengths of JM and JN
 - (ii) How far apart are M and N?

Question 5.

(12 marks)

- [7] (a) $P(2ap, ap^2)$ and $Q(2aq, aq^2)$ are two points on the parabola $x^2 = 4ay$. The variable chord PQ is such that it is always parallel to the line y = x.
 - (i) Find the gradient of PQ and hence show that p + q = 2
 - (ii) Show that the equation of the **normal** at P is: $x + py = 2ap + ap^3$, given that the gradient of the *tangent* at P equals p.
 - (iii) Write down the equation of the normal at Q, and hence find the coordinates of the point of intersection R, of these normals.
 - (iv) Prove that the locus of R is the straight line $x 2y + 12\alpha = 0$
- [5] (b) Newton's Law of Cooling states that when an object at temperature $T^{\circ}C$ is placed in an environment at temperature $T_0^{\circ}C$, the rate of the temperature loss is given by the equation:

$$\frac{dT}{dt} = k(T - T_0)$$
 where t is the time in seconds and k is a constant

- (i) Show that $T = T_O + Ae^{kt}$ is a solution to the equation.
- (ii) A packet of peas, initially at 24°C is placed in a snap-freeze refrigerator in which the internal temperature is maintained at -40°C. After 5 seconds, the temperature of the packet is 19°C.
 - (α) Show that the value of the constant A is 64.
 - (β) Show that the value of the constant $k \approx -0.0163$
 - (γ) How long will it take for the packet's temperature to reduce to 0^oC?

Question 6.

(12 marks)

(Start on a new page)

- [2] (a) Find the general solution for: $\tan 2x = 1$
- [5] (b) A golf ball is lying on a horizontal fairway when a golfer hits it. It just passes over a 2.25 metre high tree 1.5 seconds later. The tree is 60 metres away from the point from which the ball was hit. Taking $g = 10 \, m \, s^{-1}$, calculate:
 - (i) the initial velocity and the angular projection.
 - (ii) how far away, from where the golfer hits it, does the ball land.
- [5] (c) Soft serve ice cream is served into a jumbo-sized right circular cone as shown in the diagram. The cone has height 22 cm and radius 7 cm.

Ice cream is leaking through a hole of negligible size in the bottom of the cone at a constant rate of 7 cm³ per minute.

- (i) Use similar triangles to find a relationship between r and h.
- (ii) Show that when the depth of the ice cream in the cone is h cm, the volume of ice cream is $\frac{7}{66} h^3$, using the approximate value $\pi = \frac{22}{7}$
- (ii) At what rate is the depth of ice cream in the cone decreasing when h = 11

Question 7.

(12 marks)

(Start on a new page)

(a) A particle is moving in a straight line. At time t seconds its velocity, v metres per second, and its displacement, x metres, are such that:

$$v^2 = 48 - 3x^2$$

- (i) Show that the motion is simple harmonic.
- (ii) Find the amplitude of the motion.
- (iii) Determine the particle's maximum speed.
- (iv) Determine the particle's maximum acceleration.
- [8] (b) The diagram shows two touching circles, with centres P and Q. The circle with centre P has a radius of 4 units and touches the y-axis at R. The circle with centre Q has a radius of 3 units and touches the x-axis at S. PQ produced meets the x-axis at P and P and P and P are P are P and P are P and P are P are P and P are P and P are P are P and P are P and P are P are P and P are P are P and P are P and P are P and P are P and P are P are

- (i) Show that $OR = 3 + 7\sin\theta$ and $OS = 4 + 7\cos\theta$
- (ii) Show that $RS^2 = 42 \sin \theta + 56 \cos \theta + 74$
- (iii) Hence express RS^2 in the form $74 + r\cos(\theta \alpha)$, clearly stating the values of r and α .
- (iv) Find the maximum length of RS and the value of θ for which this occurs.

END OF EXAMINATION

TRIAL EXAMINATION 2000.	Fg.1		
	Q1	+ continued	
1. (a) (i) $tan(A+B) = \frac{tanA + tanB}{1 - tanAtanB}$	Aw-O	(c) $\int_{0}^{\pi} (\cos x \cdot \sin^{2} x) dx = \left[\frac{1}{3} \sin^{3} x \right]_{0}^{\pi/4}$	AI-
(ii) ton 105° = ton (45°+60°)	A1-1	= $\frac{1}{3}(\sin^3 \frac{\pi}{4} - \sin^3 0)$	
= tan 45 + tan 60 1-tan 45 tan 60		= 13(12)3-0	
$= \frac{1+\sqrt{3}}{1-\sqrt{3}}$	A1-1	$= \frac{1}{6\sqrt{2}} = \frac{\sqrt{2}}{12} \approx 0.1178^{2}.$	Aw-
$= \frac{1+\sqrt{3}}{1-\sqrt{3}} \times \frac{1+\sqrt{3}}{1+\sqrt{3}}$		(d) $\pi^6 - 9\pi^3 + 8 = 0$ <u>let</u> $\alpha = \pi^3$	·
$= (-2-\sqrt{3})$	AW-3	$- \alpha^2 - 9\alpha + 8 = 0$ $(\alpha - 8)(\alpha - 1) = 0$	AI -3
(b) $\frac{2\pi + 1}{2\pi - 1} > 2$		$0 = 8, 1.$ Now, $2^3 = 8 - 7$ $2c = 2$	Al-
Critical Value when $2\pi - 1 = 0$ ie. $6x = \frac{1}{2}$	AI-1	$2L^{3}=1$ $2L=1$	Aw-
Now, 272+1 > 2(22-1) 222+1 > 422-2			
3 7 27L ∴ (7L € 3/2)	A1-1		
NEST: × × × × × × × × × × × × × × × × × × ×			
: (Y2 < 7L \(\frac{1}{2} \)	Αω-3		
		-	

• • • • • • • • • • • • • • • • • • • •	ાવુન્ડ		
Q2. $(ay) \% (x \log x - x) = (x \cdot 1 \% + \log x \cdot 1) - 1 + \log x - 1$	A1-1	= T2 (T6)	
= log >c	Aω-(2)	$= \left(\frac{1}{12} \frac{2}{\sqrt{12}} \right)$	Au
$\iint_{2} \log x dx = \int_{2} x \log x - x \int_{2}^{e}$	A1-1		710
= $(e \log e - e) - (2 \log 2 - 2)$ = $(e - e) - 2(\log 2 - 1)$		Q3. (a) (i) Let f(x) = x2-4 + logex	
$= 2(1-\log 2)$	Aw-2	$f(1) = 1^{2} - 4 + \log_{e}(1) = -3$ $f(2) = 2^{2} - 4 + \log_{e}(z) = 0.693$	
(b)(i) CF = CE (tangents from an external point are equal). .: DECF is isosceles.	Al-1.	Since f(x) changes sign, the root lies helwen 1 and 2. (ii) Half the interval of land 2 is 1/2.	. A
- LEFC = LCEF = 65° (lose L's isosc. 1)	Aw-2	$f(1/2) = 1.5^2 - 4 + \log_e(1.5) = -1.34$	
(i) LEOF = LCEF = 65° (all segment Theorem)	Aw-1	Since $f(1/2) < 0$, the root lies between 1.5 and 2 Half the interval of 1.5 and 2 is 1.75	A
(c) (i) $\cos 2\alpha = 2\cos^2 \alpha - 1$ Let $\alpha = 3\pi$		$f(1.75) = 1.75^2 - 4 + loge(1.75) = -0.378$ Since $f(1.75) < 0$, the root lies between 1.75 and 2	. Au
$\cos 6\pi L = 2\cos^2 3\pi - 1$	Αω-①	The road is the interaction of $y = \log ex$ and $y = 4 - x^2$.	
(i) $V = \pi \int y^2 dx$ $= \pi \int_0^{\pi} \cos^2 3x dx$	AI-1	ie. loge x = 4-22	۸. ،
$= T \int_0^{\pi} V_2(\cos 6\pi L + 1) d\pi$	Al - 1	Those is only one such point.	flw-
= \frac{1}{2} \left[21 - 16 \sin 6x \right] \frac{1}{6}	A1-1		
= 1/2 [(1/6-1/6sin Tr) - (0-1/6sin 0)]	1		

Q3,	conti	nued	

(b)
$$y = \frac{x^2 - 2x - 3}{x - 1}$$

When $y=0: 2x^2-2x-3=0$ $(2x-3)(2x+1)=0 \longrightarrow (2x-3,-1)$

Oblique Azymptoles: when (y= >2-1 DIVIDE: 22-2341 _ 4 $(2L-1) - \frac{4}{2L-1}$

$$\frac{dy}{dx} = \frac{(2c-1)(22c-2) - (2c^2-2x-3)}{(2c-1)^2}$$

$$= \frac{22c^2 - 22c - 2x + 2 - x^2 + 2x + 3}{(2c-1)^2}$$

$$= \frac{x^2 - 22c + 5}{(2c-1)^2}$$

TP when dys = 0 ie. $5c^2 - 25c + 5 = 0$

Since 0<0, there are no stationary points.

Aw-(2)

Q4. (a) (i) AP:
$$\beta-\alpha=y-\beta$$

: 2B = x + 8

(ii)
$$\alpha + \beta + \beta = -\frac{1}{2}\alpha = \frac{36}{8} = 4.5$$

(ii) $(\alpha + \delta) + \beta = 4.5$ $2\beta + \beta = 4.5$ $3\beta = 4.5 \longrightarrow \beta = 1.5$

Now, d+8 = 3 - 0Also, apr = -da = -2/2

Eq.(1):
$$X = 3 - \alpha$$

Subinb(2): $\alpha (3 - \alpha) = -74$
 $4\alpha^2 - 12\alpha - 7 = 0$
 $(2\alpha + 1)(2\alpha - 7) = 0$

 $\therefore \alpha = -1/2, \frac{7}{2}.$

When $\alpha = -V_2$, $\delta = V_2$ } $\alpha = V_2$, $\delta = -V_2$ }

: The roots are -1/2, 3/2, 1/2

(b) (i)
$$\sum_{r=1}^{n} (sr-4) = 1+6+11+\cdots+ (sn-4)$$

(i) Pave: $|+6+11+...+(5n-4) = \frac{1}{2}n(5n-3)$

Aω

Aω

Al-

Aw.

Al-

Q4, continued.		Q4 C0
* Azsume the for n=k:		A.O.
ie. 1+6+11+ + 5k-4 = 1/2 k(5k-3)	1	
* Prove the for n= k+1:		In
RTP: [1+6+11++ 5h-4]+ 5(12+1)-4 = ½(12+1)(5(12-	1)-3)	(i) I
ie. $1+6+11+-+(5k-4)+(5k+1) = 1/2(k+1)(5k+2)$	Al-1.	-MN ²
$LHS = \frac{1}{2}k(5k-3) + (5k+1)$ $= \frac{1}{2}\left[5k^{2} - 3k + 10k + 2\right]$ $= \frac{1}{2}\left[5k^{2} + 7k + 2\right]$		MN
= $\frac{1}{2} (k+1)(5k+2)$ = RHS.		05. (a) (i)
Since proved two for n=k+1 and show two for n=1; then the result must be two for n=2,3,ed. by the process of Mathematical Inclution. (C) P	Αω-Ψ)	(ii) (m
/MJN = 100°.		
M		Eq. 0.

Q4 continued	
$IID DJMP: ton 42° = \frac{500}{JM} :: JM = \frac{500}{ton 42°}$	A
$I_{N} \Delta J_{N}P: tan 32° = \frac{500}{J_{N}} :: J_{N} = \frac{500}{tan 32°}$) A-
To DIMN: By the Cosine Rule.	
$MN^{2} = \left(\frac{500}{\tan^{4}2}\right)^{2} + \left(\frac{500}{\tan^{3}2}\right)^{2} - 2\left(\frac{500}{\tan^{4}2}\right)\left(\frac{500}{\tan^{3}2}\right)\cos^{4}(0)$	
: MN = (1050-2 metres)	Aw
07 2	
Q5. (a) (i) $M_{pq} = \frac{\alpha \rho^2 - \alpha q^2}{2\alpha \rho - 2\alpha q} = \frac{\alpha (\rho - q)(\rho + q)}{2\alpha (\rho - q)} = \frac{\rho + q}{2}$	
In parallel to $y=x$ i.e. $m=1$. $\frac{p+q}{2}=1$	
p+9=2	Aw
(i) $M = -1/p$ at $P(2ap, ap^2)$	
y-y, = m(>1->1,)	
$\therefore y-\alpha p^2 = -1p(2L-2\alpha p)$	
$yp-ap^3=-x+2ap$	
$\frac{1}{12} \left(\frac{1}{12} + \frac{1}{12}$	Aw-(
(ii) Similarly, eqn. of normal at Q is:	
76 + qy = 2019 2 + 019 3	
$= \frac{59.0-0}{9.0-9} = \frac{20(p-q)}{0.00} + 0.00 = \frac{20(p-q)}{0.00} + 0.$	
$4 = 20 + 0(p^2 + q^2 + pq)$	A1-

$$y = 2\alpha + \alpha (4-pq)$$

$$y = 6\alpha - \alpha pq.$$

$$Fq = \frac{-x}{2\alpha}$$

$$y = 6\alpha + \frac{x}{2}$$

$$2y = 12\alpha + 2\alpha$$

$$-2y + 12\alpha = 0$$

$$the locus of R.$$

Aw (3)
$$T = T_0 + Ae^{kt}$$

$$dT = 0 + Ae^{kt} \times k$$

$$= (T - T_0) \times k$$

$$dT = k(T - T_0)$$

$$dW = 0$$

Continued... (ii) To = -40°, T=19°

(d) When t=0: 24 = -40 + Ae° = (A = 64)

(B) When t=5: 19 = -40+64 e 5k 59 = 64esk esh = 594 5h = In (594) : K = V5 In (5964) ie. (K = -0.0163) (3sf)

(8) For T=0: $O = -40 + 64e^{-0.0163t}$ e -0.01631 = 40 -0.0163+ = In (4984) $\frac{1}{-0.0163}$ ie. + = 28.9 seconds

Aw

	9	
Q6. (a) $\tan 2x = 1$ $2x = n\pi + \pi$		Q6.
: x = 1 + T8	Aw-(2)	
(h) si		
(b) $\tilde{\chi} = 0$ $\tilde{g} = -10$ $5\tilde{L} = V\cos\theta$ $\tilde{g} = -10f + V\sin\theta$		
$y = -lot + V sin \theta$		
$3L = V + \cos \theta \qquad y = -5t^2 + V + \sin \theta$		
(assuming aciginally of acidin (0,0).)	10	
1 At t=15, 76=60:		
$60 = V(1.5)\cos\theta$		
Vcos 0 = 40 -0	~	
) •		
At +=15, y = 2-25:		
$2.25 = -5(1.5)^2 + V(1.5) \sin \theta$		
Vsin0 = 9 2	A1-1	
Eq. 2:0: tan 0 = 940 -> @= 12.68°)	A1-1	
Schinb Eq. (): Vcos (12.68°) = 40 - (=41m5')	Αω-(3)	
(i) When $y=0: -51^2 + Vt \sin \theta = 0$ + $(-5t + V \sin \theta) = 0$		
$= t = 0 \text{ or } t = \frac{V \sin \theta}{5}$	†	
ie. + = 0, %.	A-11	
When t = 95: 2 = V+ cos0		
2 = 41 x 9/5 + cos 12.68°		
== 72 metres.)	Aw-(2)	
 	-	

Continued	T
$(c) (i) \frac{f}{7} = \frac{h}{22}$	
$22r = 7h \rightarrow -r = \frac{7h}{22}$	Aω
(i) V = 1/3 Tr Zh	
* $\frac{1}{3}$ $\frac{22}{7}$ $\left(\frac{7h}{22}\right)^2$ h	
= 22, 49h ² .h	
$\frac{1078 h^3}{10164} = \frac{7}{66} h^3$	Aw-
(ii) Now, $\frac{dV}{dh} = \frac{7}{22}h^2$ and $\frac{dV}{dt} = 7$ cm/min.	AI -
$\frac{dh}{dt} = \frac{dV}{dt} \cdot \frac{dh}{dV}$	
$= 7 \cdot \frac{22}{7h^2}$	
$\frac{dh}{dt} = \frac{22}{h^2}$	A1-1
When $h=11$, $dh = \frac{22}{121} = \frac{2}{11} cm/min$	Aw-(:
	7.00 (

Au

Al-

Aw-

Q7.	(a) (i)	1/2 v2		24 -	32 x2
	4	$\int_{\mathcal{X}} \left(V_2 V^2 \right)$	=	-3x	•
		- (jū	=	-3x	

Since the acceleration is proportional to its distance from the origin, it is moving in SMM.

(i)
$$V^2 = 3(16-2c^2)$$

1e. $V^2 = n^2(\alpha^2-2c^2) \rightarrow ... (a = 4 metres)$

(iii) Max. Speed when
$$x=0$$
:
i.e. $v^2 = 3(16-0)$

ie.
$$5i = -3 \times -4$$

 $-5i = 12 \text{ ms}^{-2}$

(b)

(i)
$$OR = 3 + PX = 3 + 7 \sin \theta$$

 $OS = 4 + QX = 4 + 7 \cos \theta$

Aw-1

Aw-(1)

Aw-(1)

Aw-(1)

Continued.

(i)
$$RS^2 = OR^2 + OS^2$$
 (Pythagoros: Theorem)
= $(3+7\sin\theta)^2 + (4+7\cos\theta)^2$
= $9+4\sin\theta + 49\sin^2\theta + 16+56\cos\theta + 49\sin^2\theta$.
= $74+42\sin\theta + 56\cos\theta$

(ii) Let
$$42 \sin \theta + 56 \cos \theta = \Gamma \cos (\theta - \alpha)$$

where $\Gamma = \sqrt{42^2 + 56^2} = 70$
 $\alpha = \tan^{-1}(\frac{42}{56}) = 36.52$

=
$$42 \sin \theta + 56 \cos \theta = 70 \cos (\theta - 36°52')$$

$$RS^2 = 74 + 70 \cos(\theta - 36^{\circ}52')$$

(iv) Matimum value of RS occurs when:

$$COS(\Theta - 36°52') = 1$$

ie. When $\Theta = 36°52'$.

$$= RS^2 = 74 + 70 = 144$$

Al-

Aw-(